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Ising model on the edge-dual of random networks
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We consider the Ising model on the edge dual of uncorrelated random networks with arbitrary degree
distribution. These networks have a finite clustering in the thermodynamic limit. High- and low-temperature
expansions of Ising model on the edge dual of random networks are derived. A detailed comparison of the
critical behavior of Ising model on scale free random networks and their edge dual is presented.
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I. INTRODUCTION problem[31] as well as topological phase transitions in ran-
dom networkg32].
It is evident that a variety of natural and artificial systems ~ The interesting point about the edge-dual networks is that
can be described in terms of complex networks, in which théhey generally have a large degree of clustering even when

; ; ; derlying network is treelike. Moreover, as was shown
nodes represent typical units and the edges represent interdf€ Un ,
tions between pairs of uni{d—3]. Clearly, identifying struc- In Ref. [33], the edge dual of an uncorrelated random net-

tural and universal features of these networks is the first steﬁﬁirgr:stﬁ ep?]i)lg\ézI)(N?t?']rrtef:Ztesc;[n?asfj(;rgt?élgbfz]:\tve\loékr[]?é'r:gr ten-
in understanding the behavior of these systé<]. Inten-

. . ; dency for being connected to each other. On the other hand,
sive research in recent years has revealed peculiar propertlgshigh level of clustering along with a positive correlation

of complex networks which were unexpected in the convenpepyeen the degrees of neighboring nodes are the prominent
tional graph theony{10]. Among these one can refer to the features of social networks which differentiate them from the
scale free behavior of degree distributif®l P(k), where  other kinds of real networki34]. In addition one can easily
degree denotes the number of nearest neighbors of a nodshow that the edge dual of an uncorrelated scale free network
From another point of view one is interested in the effect ofwith P(k) k™ will be a network whose degree distribution
structural properties of complex network on the collective
behavior of systems living on these netwofi4-1§. Per-
colation and Ising model@r in general the Potts modedre
typical examples of statistical mechanics which have inten-
sively been studied on uncorrelated random networks with
given degree distributiongl9-29. By uncorrelated random
network we mean those in which the degree of two neigh-
bors are independent random variables. These networks al
identified only by a degree distributioR(k) and have the """ _
maximum possible entropy. The locally treelike nature of
these networks provides a good condition to apply the recur-
rence relations to study the collective behavior of interesting
models[22,29,3Q. It is seen that, depending on the level at Q
which the higher moments d®(k) become infinite, one en-
counters different critical behaviors that could be derived
from a Landau-Ginzburg theofsL9]. This in turn reflects the
mean field nature of these behaviors.
In this paper we are going to study the Ising model on the N S T
edge dual of uncorrelated random networks with a given de-
gree distribution. These kinds of networks have already beer
introduced in the context of graph thedi0]. Given a net-
work G, its edge duals can be constructed as follows, see
also Fig. 1: one puts a node in place of each edgé ahd
connects each pair of these new nodes if they are emanatin
from the same node d&. Such networks have been useful
among other things for the study of the maximum matching

FIG. 1. Some part of the edge dual of a Bethe lattice wzith
=3. Empty circles and dotted lines denote the nodes and the edges
*Electronic address: ramzanpour@mehr.sharif.edu of the edge-dual network, respectively.
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TABLE I. Comparison of the critical behavior of Ising model on scale free random net@2kséwritten
inside parenthesisand its edge-dual network.

Magnetization Specific heat Susceptibility
V=5 FI2( A1) Fus cons(cons) T
y=5 ?/2((7.”'—](7.))1/2) ﬁ/ln(ﬁ)l/’& In(7)(1/In(7)) 1An(@(7h)
3<y<5 FA9) Fe-no FHrIHA5N079) VA

behaves a@(k)ock‘(fl) for large degreef33]. Summing up other if their correspo_nding edges are incident on the same
these points one finds that the edge dual of uncorrelated scdi@de of the Bethe lattice. We can write the average magne-
free networks would be a better candidate to model the strudization of a spin lying on an arbitrary edge using the follow-
ture of social networks. On the other hand, due to the prednd recurrence relatiof80]

ence of clustering and correlation in such networks, direct 0o o

study of structural properties or of physical models defined = e~g+(0) € ~9—(0) (1)

on them is usually very difficult. However, one can use the g2(0) +e—Hgg(O)’

above duality to adopt the techniques used in the context of

random networkge.g., the generating function formalism where H: =h/T and g.(0) and g_(0) are, respectively, the

[20,21)) and obtain interesting results for the edge dual ofpartition functions for the system of spins on one side of the
uncorrelated random network83]. In this way one would  central spin when it is up or down. That is,

be able to study the effects of clustering and correlation, for

example, in the critical behavior of Ising model on such a _ K>~ SSHKD — SS+H >~

network. So far we have a nearly complete picture of the 950 -%}e 2”5 ; E“”SS Eig’ @

critical behavior of this model on uncorrelated random net-

works, but there is still a lot which we need to know aboutwhere, as beforelK: =J/T. Note that in this partition func-

the critical behavior of clustered and correlated networks. tion only spins on one side & (for instance, the right-hand
Our basic result is depicted in Table |, where we haveside Spins’ denoted k{ng}) appeatr. Similar t(gS(O) ohe can

compared the critical behavior of Ising model on scale freqjefine a partition functioryg(l) which gives the partition

networks and their edge dual networks. On the way to thigynction of the branch of the lattice which stems from a node

be_13|c result we have also studied as a p_rellmlnary step thg; layer| where the value of its spin has been fixedSo

Ising model on the edge dual of Bethe lattices. We have als§hese partition functions can be related to each other recur-

developed a systematic high- and low-temperature expansiagjyely as follows, see also Fig. 2: on the right hand sid& of

for the_ Isi_ng model on edge-dual networks for arbitrary de-there arez—1 spins which interact witr§ and with each

gree distributions. other. We can writegg(l) as a sum over different configura-

_ Moreover as a by-product we have also shown that thergong of these spins. For each configuration we will have a

is a simple relation between the partition function of an Isingam proportional tag(I+1)gZ + (1 +1), wherer will be the

model on a tree in which each spin interacts with its nearest \mber of up spins in such a configuration. Moreover we
and next-nearest neighbors and the partition function of aR,ye to consider another factor which takes into account the

Ising model on its edge dual with only nearest-neighbor in-gg|;mann factor associated to this configuration of spins.
teractions but in the presence of magnetic field.

The paper is organized as follows. In Sec. Il we use re-
currence method for the study of Ising model on the edge
dual of Bethe lattices. The same method is applied in Sec. llI
to study the critical behavior of Ising model on the edge dual
of scale free networks. In Sec. IV a relationship between the
Ising model on a tree and on its edge dual is derived. High-
and low-temperature expansions of the partition function of
the Ising model on the edge dual of a random network are
given in Sec. V. The conclusions are presented in Sec. VI.

II. ISING MODEL ON THE EDGE DUAL
OF BETHE LATTICES

The Bethe Lattic¢30] is defined as a regular tree network

(with no, loop ‘,Nhere_a" nodes have the sa_me degreeet FIG. 2. The partition function of spins on the branch stems from
us consider Ising spins on the edges of this network and 1§ .o, recursively be written in terms of the partition functions of
them interact with an external magnetic fitlldind with each  branches now stem from nearest neighbors.of
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Energy of a configuration in which of these spins are up is 30F

the sum of three parts, a part given by their interaction with 28 F

the external magnetic field equal th(2r —z+1), a part from 26 F

their interactions with spii$ equal to J[Sr-S(z-1-r)] and 24F

finally a part given by interactions between themselves equa  22F

to =Jr(r-1)/2+(z-1-r)(z-=1-r-1)/2-r(z-1-r)]. Sum- 20F

ming up the above arguments we arrive at 18F

Tc 16

=1/ 1\ - . E

gs(h =2 (Z )eH(2r—z+1)+K[S(2r—z+1)—2r(z—1—r)+(z—l)(z—2)/2] 14F

=0\ T 12

r z-1-r 10F

xgl(l+ DG (1 + 1) ) F

Returning to Eq(1), magnetization of the central spin can be 6F

rewritten in a simpler form 4F
2k |

x5 el-e

hexy eM+e@o

= (4)

FIG. 3. T¢( in units of J) for the Ising model on Bethe lattices

| d their edge dudl
where we have defined;:=g_(1)/g,(I)=:€¥. When the (lower curvg and their edge dulipper curve:

magnetic field is positive we hawg () <g,(l) thusy, is a ~

positive quantity which plays a role similar to the magnetic AS Fig. 3 showsT, is much grater thafT; which is as
field and thus can be interpreted as the local field experi€xpected due to the larger number of interactions in the edge-
enced by a spin at distant¢drom the central spirS. Now  dual network. In the figure we also show a linearTiitag

using Eq.(3), the recurrence relation fof reads +a,z to the numerical data fof,, with a,=-3.53+0.02 and
a;=1.97+0.002. As long as the critical behavior of the sys-
s (z— 1) e<2ﬁ+y|+1)r+k[z-1-2r-2r(z-1-r)] tem is_ concgrned we expe'ct to see a stanqard mean field
T\ behavior as in the usual Ising model in spatial dimensions
yi==In -1\ - - - (8 greater tham,=4. We will further discuss these issues in the
2,( . )e(2H+VI+1)”K[2r‘Z+1‘2“2‘1‘”] next section.
Settingﬁzo and starting from distant >1) spins withy lll. ISING MODEL ON THE EDGE DUAL
<1 one could obtain the values gffor deeper spins in a OF RANDOM NETWORKS

step by step manner using the above relation until one arrives

aty,. Equation(4) tells us that we will have magnetization in . h Flsi | h | of
this case only ify, is different from zero. It is evident that a S€ction to the case of Ising model on the edge dual of ran-

stable nonzero solution foy, is possible only when the d0m networks with a given degree distributiexk). In this
right-hand side of the recurrence relation Jgrwhen plotted ~ €@S€ @ Spin on the edge of such a random network will en-
versusy|.,) has a slope greater than or equal to 1. The equa|gounterk1—1 andk,—1 nearest neighbors on its right- and

ity will provide the critical temperature of the system which |€ft-hand sides, respectively. These numbers are random
turns out to be given by variables given by the degree distribution of nearest neigh-

bors in the random networl (k).

In this section we generalize the results of the previous

z-1\ =~ ~
>or e K172 sinjK(2r - z+ 1)]
r r A. General arguments

=1. (6)
S (Z_ 1>eRC[z-1-2r(z-r)] Along the lines of Sec. Il we can write the magnetization
r of a spin on an edge of random network with end point nodes
of degree¥k; andk, as
Unfortunately it is not possible to derive a closed relation for

K. In Fig. 3 we have computed th!s quantit_y r]umerically e2H _ g Yolk)-yolky)

and compared it with the corresponding quantity in the Bethe ﬁ]klkz = , (8)
lattice itself. In the latter case the critical temperature reads e + eVolkiYolko)

[30]

where nowy’s are random variables depending on distance
tanhK.= 1 @) and degree of end point nodes. Obviously magnetization of
¢ z-1 an arbitrary spin is given by
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H — e‘Yo(kl)—yO( ko)

M= 2 T(k)Tl(ky) 9)

Ky, Ko e?H + @ Yolk)-yolko)

As before we used the notatiox(k): =e® and x (k)
:=g-(1;k)/g.(;k), whereggl ; k) is the partition function for
the cluster beyond the spiB at distancd from the central
spin. As in the case of Bethe latticdsig. 2) these quantities
can be related tgg (I +1;k’)’s by the following relations:

PHYSICAL REVIEW EG69, 066114(2004)

k-1

gel:k =3 H(@r—k+ D +K[S(2r-k+ 1)=2r (k-1-1)+(k-1) (k-2)/2]
r=0

k-1

IT g-(1+15ky),

b=r+1

x X [T gl +15k) (10

r’lk-1a=1

where the second sum is over different selections dfs-
tinct spins from the set ok—1 neighboring spins after as-
signing indices 1 t@ to them. Thus the relation fog(k) has
the form

k=1 _Hor+K[k-1-2r-2r(k-1-1)] k=1-1
(0= Er:O e T Ek—1—r/k—1 Ha:l X+1(Ka) (11)
Y7 QL _forek[2rke1-2 (k-1-1)] k=1~
Er:o il ' Zk—1—r/k—1 Ha:l Xi+1(Ka)
or in terms ofy’s
k=1 R2r+K[k-1-2-2r(k-1-1)] I RN
r=0 © Ek—1—r/k—1 € 23:1 Y
yi(k)==1In — — (12)
k=1 Ror+K[2r-k+1-2r (k-1-)] ST k)
r r—k+1-2r(k-1-r — Yi+
Er:0 € 2k—1—r/k—1 € gy TR
I
Let us also derive a relation for the average energy of <E>: NE P(K)(ey) (14)
k

Ising model on the edge dual of random networks in the
absence of magnetic field. First note that we can write this

quantity as a sum over the interaction energy associated
the spins on the edges emanating from the same noG of
that is

EZEQ:E > —js(ms(ik))- (13

[ (((ij)(ik)>

here (g, is the average energy associated to a node of
egreek. We are able to write this quantity in termsg$ by
summing over different configurations of spins on the edges
of such a node. As before we sum over configurations in
which r spins out of thesé spins are up. For each such
configuration we include an appropriate Boltzmann weight
as before. Denoting the interaction energy of these spins by

r(r=1) . (k=r)(k-r-1)

2 2 —r(k—r))

& = —3(

Thus the thermodynamic average of the above quantity readse obtain

k KIr (r=1)/2+(k=r) (k-r~1)/2-r (k- r ) k :
Er:O 6, e Irr-Dr2+ken(k-r-Dr2-r( r)]Er/k Ha:l 9+(0'ka)Hb:r+1 9-(0;ky)

(15

(& = S

K[ (r=1)/2+(k=r)(k=r=1)/2- (k=r) r . k . '
=0 € e i r r]zr/k Ha:l 9+(O’ka)Hb:r+1 9-(0;kp)

066114-4



ISING MODEL ON THE EDGE-DUAL OF RANDOM NETWORKS PHYSICAL REVIEW B9, 066114(2004)

After some algebra this relation takes the following sim- (E) - N32 P(K)
pler form in terms ofy’s K

k (K or(kr)s
k(k—1) kk-1) Erzo(r >2r(k— r)eK2r ke +yor
X -
2

2 2 ‘:_o e—K2r(k—r)+y0r

(8y=-1

~ k-t
Elr(:o Zr(k_r)e—Kzr(k—r)Ek_rlk G_Ea=1 volky) (19
- - pn . for the average of energy in the absence of magnetic field.
Elr(:o C S e, Yolka At this stage it is instructive to note that we can obtain the
correlation between the central spin and a spin at distance

by taking derivative ofm with respect toH,, the magnetic
field acting on such a spin. To this end we need also to label
the magnetic fields along with thes in the above relations.
Indeed in Eqs(17) and(18) the magnetic field has a similar
index to that ofy. On the other hand, we have

(16)

Equationg9), (12), and(16) are the exact relations for mag-
netization, effective fieldy, and energy of the system.

B. The effective medium approximation I
- m
In this section we simplify the relations obtained in the Xi-= T
previous subsection using the effective medium approxima- JH
tion [22,29 applied satisfactorily to the study of Ising model ~ 2 | . .
on uncorrelated random networks. It is believed that this ap?/nere f=2[((k=(K)/ (K] is the number of spins at dis-
proximation takes in a good way into account the effects ofance!l from the central spin in the edge dual of random
high degree nodes which play an essential role in determiraetwork andG.(0,l): =(S$)—(S¥S). Note that susceptibil-
ing the critical behavior pf the system specifica_lly _in ir_1ho- ity is given by’y==, x; where, from Eqs(20) and (17), x;
mogeneous network having scale free degree distribution. reads
To this end we rewrite the relations derived above 35if s
are independent &, the degree of the end pint nodes. This ~ _dm Ay \ Y1
is achieved if we use the sargdor all the spins which are at X = w__ ay, ~
the same distance from the central spin. The only explicit 01=0 7 gH,

depend.enceh onl; entersd.Eq_.élz.) WhifCh must be. ahveraged If spins are deep enough in the network we can take all
over using the degree distribution of nearest neighbtild. o \'s equal to each other, so for their derivatives. After
We emphasize that this approximation is exact if we expanqlnaking this approximation we obtain

our relations for small’s and keeping only the linear term.
Note that we are finally interested in the critical behavior of _ oam( ay; \Yayy 1,
the system wherg’'s tend to zero and thus we expect the X = a_<a_> —— € ;|{H|=0}, (22
above approximation to work well in the critical region. Yor¥isa/ o H,

Consequently we use the following relations to extract the

=1,G.(0,]), (20)
{H=0}

(21)

{H,=0}

critical behavior of Ising Model on the edge dual of an un_where
correlated random network: ~ 1
Ni=- T\ (23
M _ 20 |n<i)
m— (17) 9Yis1
e?H 4+ e o . . o :
Here the index is only to distinguish betweeyis in two
o subsequent shells and we will eventually set allylseequal
for the magnetization, to each other. This quantity is determined from the fixed
point of Eq.(18). Consequently the length scaleis deter-
yi=- 2 (K mined from Eq(23) and as expected, it will become infinite
k in the critical point, that is wheny;/dy;.,=1. It is this criti-
w1 (k=-1\ .- ~ cal behavior that gives rise to the critical behaviofyoNote,
E e(2H+y|+l)r+K[k—1—2r—2r(k—l—r)] ~ . . .
r=0\ however, that is not the correlation length which is deter-
X k—1\ -~ - ' mined from the long distance behavior G£(0,l).
Ek_l ( ) e 2H+y pr+K[2r-k+ 1-2 (k=1-1)]
r=0 r
C. The critical behavior
(18)
Using Eq.(18) it is not difficult to see thay, is nonzero
for the recurrence relations definiryts and only for temperatures less thdi which satisfies
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_ k=-1\ - ~ =12 T

PN r( )e‘Kczr(k‘l‘”Z sinHK(2r —k + 1)] y~77% H=0,
> 1K) o

k Er (k; 1>ekc(k—1—2r(k—r)) y~H", 7=0,

_ no-

t (24 y~=, H#07+#0. (27)
It is a simple generalization of E¢6). This equation tells T
us that if RC—> 0, i.e., at high temperatures, we haR@ The critical behavior of the other quantities can easily be

~(k)/ ({(k®—(k)). In other words the critical temperature of derived from these relations
the system becomes infinite only when the second moment - ~ ~

of P(Kk) is infinite. This is the same behavior observed in Mm~71 o&C~const., x~77 H=0,
uncorrelated random network2,23. Thus even the finite ~

value of clustering of edge dual networks cannot signifi- m~HY, F=0, (28)
cantly alter the critical point althougnlﬁC>Tc as we saw in ~ - »
the case of Bethe lattices in Sec. IV. where 6C is the change of specific heat through the critical

Now let us limit ourselves to the critical region wheye point. Here we ha\ie only shown dependence of interesting
ﬁ, and® :|(T—'~|'c)/'~|'c| are very small. We want an expan- quantities orir and H._Clearly these behaviors are those 01_‘
the standard mean field model seen in the Ising model in
- spatial dimensions greater thap=4. This behavior is also
critical point. First note that if we change the signtbfthen  seen in the case of Ising model on uncorrelated scale free
by definition the sign ofy changes too and thus the magne-random networks withy>5 [22,23. Note that due to the
tization is reversed. On the other hand, energy does ndiniteness of all the moments of degree distribution in Bethe
change under this change of sign. Any expansion of theskttices, the critical behavior of Ising model on their edge

quantities in terms ol andy must satisfy these symmetries. dual network also lies in this class.
We summarize these arguments in the following expansions:

sion of M, y, and(E) in terms of small deviations from the

2. The casey=5

Now y=4. Some of the coefficients in expansions of Eq.
f~H +y, (25) become infinite. To avoid these divergences which are
an artifact of our expansion, we set a cut off for degrees
which is proportional to 1y. Indeed in our expansion we
used the fact thaty<1 wherek is the degree of a nearest
neighbor. Fortunately we are interested in the critical behav-
ior wherey— 0 and the the above arguments work well in
that region[22].

y = a;(2H +y) +ay(2H +y)?,

(E) ~ bg + boy?, (25) Considering the above arguments, we find
y~7¥2 H=0,
where the coefficientsa,;,az,bg, andb, are found to be
}"_‘| 1/3 s
~ ~{—=] , 7=0,
a,= 1+O(KYT,  ag~ O((KY), @
Hoo-
bo ~ O((k?), b, ~ O((KY). (26) Y~z , H#07+#0. (29
7In(?

In this equation the averages are taken with respect to the ) ) N
degree distribution of random netwoBk). To be more spe- Thus the interesting quantities behave as

cific let us consider a definite degree distribution, that is the _ 1 _
well known scale free distributiof(k) <k . We consider m~772 8C~In(m, Y~-= , H=0,
several cases depending on the valuey.of 7In(7)
'H 1/3
1. The casey>5 Fﬁ~< L ) . 7=0. (30)
In this case the edge dual network behaves as a scale free In(H)
network [33], with ‘y=y-1>4. Moreover, all the coeffi-
cients appearing in the expansions of E2f) are finite. It is 3. The cas@8<y<5
easy to show using E25) and(26) thaty is given by the In this case the degree distribution of edge dual network
following relations: will have the exponent 2 y<4. Again we have to take into
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account the divergences appearing in the expansion coeffi
cients. From Eqs(25) and(26) we find

y~72 H=0,

y~ i, 70,

y~m, Fi#O, T#0. (31

For the thermodynamic quantities we find

fh~712 S5C ~F0r92, Y ~F (312 H= 0,

M~ HE®  7=0. (32

We do not consider the cage< 3 since in this regiory
=<2 and the average number of neighbors is infinite in the
edge dual network although it is still finite in the correspond-
ing random network.

The above results show that these critical behaviors are
very different from the ones seen in the uncorrelated scale FIG. 4. To each edgéj) we can assign a spin which is defined
free networks[22,23, see Table I. For example, here the as the product of spins at the end point nodes of that edge, i.e.,
magnetization always behaves similar to the standard mea#i): =SS
field caseMm~7"2, but in uncorrelated scale free networks
this behavior is only seen for>5 where all quantities are of dual of the tree, with nearest-neighbor interactions of

the standard mean field tyg@2,23. strengthJ;=J, in presence of a magnetic field of magnitude
h:Jl:
IV. A RELATION BETWEEN ISING MODEL ON A TREE
AND ITS EDGE-DUAL NETWORK E=-h2S-3,> sS, (35)
Let us consider an Ising modekith values of spin taking i (i1

only +1) on a tree graplG with nearest- and next-nearest
neighbor interactions of strengh andJ, in the absence of wherei andj now denote the nodes of the edge dual graph.

magnetic field. The Hamiltonian is Taking into account the relation between configurations men-
tioned above we obtain
E=-32SS-%2 SS, (33)
(ii)g (U

where (ij); and (ij), denote the nearest- and next-nearest Z(I1,3,h=0,T) =22(3,= 3, ), =0h=J,,T),  (36)

neighbors, respectively. For any given configuration of spins ~

we can assign a unique configuration of spin variabdggin  in which Z andZ are, respectively, the partition functions of
taking values *1to the edges of the graph: any edge whichihe |sing model orG andG and T denotes the temperature.
connects two nodes having the varialands is assigned  \ye should stress that the above relation is true only for tree
a va.lueS(iJ;): =SS, see Fig. 4. On the other hand, for any granhs; since the presence of loopsGimputs constraints on
configurations of spins on the edg&g), there are two pos- the values of spins which are assigned to the nodes.of
sible configurations of spins on the nodes, which are obTpat is for any loop inG, the product of spins on its edges

tained by flipping all the spin§ on the graph. Therefore . —_
there is a two to one correspondence between the spin Coggquwalently the nodes dE) should be +1. Taking into ac-

figurations on the nodes of the graph and the edges of thgount all these constraints makes the calculation of the par-
tition function very difficult in the general case.

graph. S
Now if we write the above Hamiltonian in terms of spins In the thermodynamm I|.m|t~the two models have the same
of edges we get free energy density, that i$=f, wheref:=-T In Z/N and
f:=-T InZ/N are, respectively, the free energy of the Ising
E= —312 Sij) —322 Sk Sikj)» (34)  model on tree and its edge dual. Here we have set the Bolt-
e iz zmann constant equal to one. Note that for a tree griph,
wherek is the common nearest neighbor of nodeandj.  =N-1. Moreover, it is easy to see that the average magneti-

But this is the Hamiltonian of an Ising model @) the edge zation of a spin inG
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o 3_? k2SS = cosh(® T [1+ §StaniK)l, (41
m=-—- (37) i i
dh ()
@s equal to the average correlation of two neighboring spingynerel : =Nn,/2 is the number of edges in e Inserting
in G this in Eq.(40) and expanding the product we get a series of
-of terms each corresponding to a subgrapEoSumming over
<S%>:_(”l- (38 spin configurations only terms which represent even sub-

graphs(in them each node has an even number of edgils
Knowing the average magnetization of Spins@]as a SUrVive[SO] and we arrive at the fO”OWing eXpreSSion for the
function of magnetic field, we can write the free energy den-Jartition function:
sity from Eq.(37) as follows[30]: _ - - -
. Z=coshk(K)2N > 7, (42)
fJ,hT)= f [M(h") - 1]dh =3, - h. (39) even subgraphge
h

where77:tanl‘(R), N:Nn1/2 is the number of nodes @,

andt(ge) is the perimetefthe number of edge®f the even
subgraphge.
stant J;-h can be understood from the fact that for very  cjearly at high temperatures the first and the second terms

large magnetic fields when the first integral vanishes, theqrresponding to triangles and squares need be kept in the
partition function is dominated by the configurations Whereexpansion:

all the spins are up, and hence the free energy per site is

given by J,-h. _ - 7 = costh(K)2MN, 73+ N 7 + - +-). (43)
Obviously if we replacel; with J, and h with J; we

obtain f, the free energy per site of Ising model @with

nearest- and next-nearest-neighbor interactions. In this w.

any nonanalytic behavior df will appear inf too.

Differentiation of the right-hand side with respect?ho
correctly gives the magnetizatidn and the integration con-

The number of triangles i has two parts: first, each tri-

agngle ofG appears as a triangle {& too. Secondly, by defi-

nition of the edge-dual network, every triple of edges ema-

nating from the same node @ make a triangle irnG. The

number of the latter types of triangles is given by the number

of distinct choices of three edges of a node, summed over the
Consider a random network which we denote®yWe  nodes ofG. Thus

assume that the probability of each node having delrise

equal toP(k). Furthermore we assume that there is no cor- N =N +2 (ki)

relations between the degrees of adjacent neighbors. The av- AT A ~\3)/)’

erage number of nearest neighbors will be denotechpy

:=(K=2kP(k). The degree distribution of nearest neigh- i which k; is the degree of nodein G. Since in an uncor-

bors [21] is given by II(k)=kP(k)/(k). Thus the average related random network the number of triangles is a finite

number of next-nearest neighbors will b®:=(k)=(k  quantity in the thermodynamic limj85], we can neglect the

= DII(K) =(k?—(K). first term compared with the second one which has an infi-

The edge dual of such a network is denotecfbyCorre- nite contribution in this limit. The same argument is appli-

. . . ~ cable to the case of squares so we can approximate these
spondingly every quantity pertaining to the dual netw@k numbers by
will be designated by a tilde. In the following we will study

V. HIGH AND LOW TEMPERATURE EXPANSION
OF ISING MODEL ON EDGE-DUAL NETWORKS

(44)

the Ising model with only nearest-neighbor interactions on 5 k N
G. The partition function is No=~2 (3|> = 52 k(k=1)(k=2)P(k),
i Tk
Z=D 2SS, (40)
S _ k-) N
N, =~ == k(k-1)(k-2)(k-3)P(k). (45
where the sum in the exponential is over the nearest neigh- © 2 (4 4!2k ( ) ) )P (49

bors on the edge dual @. Here we have used the notation ) _
K:=3/T Note that these relations become exact in the case of tree

structures even for finité&.

A. High-temperature expansion

. . . . B. Low-temperature expansion
The above partition function can be written in a form P P

appropriate for a high-temperature expansj8]. To this We now return to Eq(40), the original relation for the
end we write the exponential in the form partition function. Note that we can rewrite it as

066114-8
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7= eR’ZE [(2‘; Sij))*kil, (46)
{Si} Lo

where the first sum in the exponential is over node§ aind

PHYSICAL REVIEW B9, 066114(2004)

It is the central result of this subsection which can be used

for a low-temperature expansion of Ising model ®nThis
formula incidentally shows that each subgraghand its
complementthe graph obtained when one removes all the

the second is over nearest neighbors of that node. Let usks of g from G) give the same contribution to the partition

write Z in a simpler way
7=k e
(St

whereL is the number of edges @ andm;: =%;S;;). Using
the identity

(47)

e(klz)mizz 1 fdxie—(klz)(xi2+2mixi), (48)
27
K
we find
5 ~ N/2 B
Z= e‘KL<£) > Dxe‘(K’Z)Ei OF+25m) - (49)
2m {Sij)

whereDx=II; dx andi runs over all the nodes @. We can

function.

At very low temperatureslzﬂoo, only the empty graph
for which all z=0 and its complement for which afj =k;
contribute yielding

Zy= 26 KUK Y K o KLHKI2N D, KP(K)
i k

= 2 KN2K+KING) (54)

resulting in a free energy per site equal to

To== S0 - ), (59

where we have used the relatieJ/T.
The next to leading order term comes from subgraphs
which have only one link¢we multiply their contribution by

now perform the sum over the spin configurations in the2 to account for their complements his will give

integrand. To this end we note in view of the definitionmngf
S ek2m= 3 ek sy,
S s W

where Z;, sums over all the links of5. The sum can be
transformed to

(50)

H (e_R(Xi+Xj) + e’k(Xl‘FXj)):eRE (Xi+Xj)H (l + e—ZR(xi+xj))
(i) W (i)

:eRE kixi H (1 +e—2R(Xi+Xj)).
: <ij>

(51)

Putting all these together we find

~ \ N/2
'2 - e—RL(ﬁ) f Dxe—(RIZ)E (x?—Zkixi)H (1 + e—ZR(xi+xj))'
2m ! (i)

(52)

The productH<ij>(l+e‘2R(Xi+XJ)) can now be expanded as a

series of terms each corresponding to a subggphG.
For any nodé of the graphG, a factore %% should be

7= 20(1 + S e K2 4 ) ,
(i)

(56)

where the sum is over all the links &. This can be written
as

= = K o e
Z= 20(1 + N%e‘“‘« g Kkt > 4. ) : (57)

where<> denotes the average with respect to the two point
function P(k,k’), the probability of two nodes of degreks
andk’ to be neighbors. For uncorrelated networks one has
P(k,k)=(2 =8 )II(KII(K"). This procedure can be fol-
lowed for higher order contributions.

VI. CONCLUSION

In summary we studied the Ising model with nearest-
neighbor interactions on the edge dual of uncorrelated ran-
dom networks. As a simple example we studied the Ising
model on the edge-dual of Bethe lattices using the well
known recurrence relation procedure. We finally generalized
this study to the edge dual of uncorrelated random networks.

taken into account in whicl is the degree of that node in Although the critical temperature of Ising model on the edge
the subgraph. If a nodedoes not belong to the subgraph, dual network is higher than the one in the random network,
z=0. Any subgraph determines uniquely the sequence of inhoth quantities become infinite in the same point, that is
tegers{z;i=1,...N}. Note thatz <k;Oi. For each such se- when the second moment of the degree distribution of ran-
guence the integral can be easily calculated yielding dom network(k?) becomes infinite. This fact reflects the ro-
bustness of edge-dual networks against thermal fluctuations,
a property which can be attributed to the large number of
triangles and the special structure of the edge-dual networks.

5= e—Ru(R/Z)Z > e—zREi 7(-7) (53)
g

066114-9



A. RAMEZANPOUR PHYSICAL REVIEW E69, 066114(2004)

We also derived the critical behavior of Ising model on edgefunction of Ising model on the edge dual of random networks
dual network of an uncorrelated random scale free networkwere also derived.

The results show that this behavior is significantly different

from the one seen in the uncorrelated random networks.

Moreover, we gave a simple relation between the partition ACKNOWLEDGMENTS

function of an Ising model with nearest- and next-nearest-

neighbor interactions on a tree like network and its edge The author is grateful to V. Karimipour for helpful discus-
dual. High- and low-temperature expansions of the partitiorsions and useful suggestions.
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