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We consider the Ising model on the edge dual of uncorrelated random networks with arbitrary degree
distribution. These networks have a finite clustering in the thermodynamic limit. High- and low-temperature
expansions of Ising model on the edge dual of random networks are derived. A detailed comparison of the
critical behavior of Ising model on scale free random networks and their edge dual is presented.
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I. INTRODUCTION

It is evident that a variety of natural and artificial systems
can be described in terms of complex networks, in which the
nodes represent typical units and the edges represent interac-
tions between pairs of units[1–3]. Clearly, identifying struc-
tural and universal features of these networks is the first step
in understanding the behavior of these systems[4–9]. Inten-
sive research in recent years has revealed peculiar properties
of complex networks which were unexpected in the conven-
tional graph theory[10]. Among these one can refer to the
scale free behavior of degree distribution[5] Pskd, where
degree denotes the number of nearest neighbors of a node.
From another point of view one is interested in the effect of
structural properties of complex network on the collective
behavior of systems living on these networks[11–18]. Per-
colation and Ising models(or in general the Potts model) are
typical examples of statistical mechanics which have inten-
sively been studied on uncorrelated random networks with
given degree distributions[19–29]. By uncorrelated random
network we mean those in which the degree of two neigh-
bors are independent random variables. These networks are
identified only by a degree distributionPskd and have the
maximum possible entropy. The locally treelike nature of
these networks provides a good condition to apply the recur-
rence relations to study the collective behavior of interesting
models[22,29,30]. It is seen that, depending on the level at
which the higher moments ofPskd become infinite, one en-
counters different critical behaviors that could be derived
from a Landau-Ginzburg theory[19]. This in turn reflects the
mean field nature of these behaviors.

In this paper we are going to study the Ising model on the
edge dual of uncorrelated random networks with a given de-
gree distribution. These kinds of networks have already been
introduced in the context of graph theory[10]. Given a net-

work G, its edge dualG̃ can be constructed as follows, see
also Fig. 1: one puts a node in place of each edge ofG and
connects each pair of these new nodes if they are emanating
from the same node ofG. Such networks have been useful
among other things for the study of the maximum matching

problem[31] as well as topological phase transitions in ran-
dom networks[32].

The interesting point about the edge-dual networks is that
they generally have a large degree of clustering even when
the underlying network is treelike. Moreover, as was shown
in Ref. [33], the edge dual of an uncorrelated random net-
work is a positively correlated(or assortative) network[8], in
which the nodes with the same degree have a higher ten-
dency for being connected to each other. On the other hand,
a high level of clustering along with a positive correlation
between the degrees of neighboring nodes are the prominent
features of social networks which differentiate them from the
other kinds of real networks[34]. In addition one can easily
show that the edge dual of an uncorrelated scale free network
with Pskd~k−g will be a network whose degree distribution
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FIG. 1. Some part of the edge dual of a Bethe lattice withz
=3. Empty circles and dotted lines denote the nodes and the edges
of the edge-dual network, respectively.
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behaves asP̃skd~k−sg−1d for large degrees[33]. Summing up
these points one finds that the edge dual of uncorrelated scale
free networks would be a better candidate to model the struc-
ture of social networks. On the other hand, due to the pres-
ence of clustering and correlation in such networks, direct
study of structural properties or of physical models defined
on them is usually very difficult. However, one can use the
above duality to adopt the techniques used in the context of
random networks(e.g., the generating function formalism
[20,21]) and obtain interesting results for the edge dual of
uncorrelated random networks[33]. In this way one would
be able to study the effects of clustering and correlation, for
example, in the critical behavior of Ising model on such a
network. So far we have a nearly complete picture of the
critical behavior of this model on uncorrelated random net-
works, but there is still a lot which we need to know about
the critical behavior of clustered and correlated networks.

Our basic result is depicted in Table I, where we have
compared the critical behavior of Ising model on scale free
networks and their edge dual networks. On the way to this
basic result we have also studied as a preliminary step the
Ising model on the edge dual of Bethe lattices. We have also
developed a systematic high- and low-temperature expansion
for the Ising model on edge-dual networks for arbitrary de-
gree distributions.

Moreover as a by-product we have also shown that there
is a simple relation between the partition function of an Ising
model on a tree in which each spin interacts with its nearest
and next-nearest neighbors and the partition function of an
Ising model on its edge dual with only nearest-neighbor in-
teractions but in the presence of magnetic field.

The paper is organized as follows. In Sec. II we use re-
currence method for the study of Ising model on the edge
dual of Bethe lattices. The same method is applied in Sec. III
to study the critical behavior of Ising model on the edge dual
of scale free networks. In Sec. IV a relationship between the
Ising model on a tree and on its edge dual is derived. High-
and low-temperature expansions of the partition function of
the Ising model on the edge dual of a random network are
given in Sec. V. The conclusions are presented in Sec. VI.

II. ISING MODEL ON THE EDGE DUAL
OF BETHE LATTICES

The Bethe Lattice[30] is defined as a regular tree network
(with no loop) where all nodes have the same degreez. Let
us consider Ising spins on the edges of this network and let

them interact with an external magnetic fieldh̃ and with each

other if their corresponding edges are incident on the same
node of the Bethe lattice. We can write the average magne-
tization of a spin lying on an arbitrary edge using the follow-
ing recurrence relation[30]

m̃=
eH̃g+

2s0d − e−H̃g−
2s0d

eH̃g+
2s0d + e−H̃g−

2s0d
, s1d

where H̃ : = h̃/T and g+s0d and g−s0d are, respectively, the
partition functions for the system of spins on one side of the
central spin when it is up or down. That is,

gSs0d = o
hSRj

eK̃o ĩ uS
SSĩ+K̃okĩ j̃l

SĩSj̃+H̃o ĩ
Sĩ , s2d

where, as before,K̃ : = J̃/T. Note that in this partition func-
tion only spins on one side ofS (for instance, the right-hand
side spins, denoted byhSRj) appear. Similar togSs0d one can
define a partition functiongSsld which gives the partition
function of the branch of the lattice which stems from a node
at layer l where the value of its spin has been fixed toS.
These partition functions can be related to each other recur-
sively as follows, see also Fig. 2: on the right hand side ofS
there arez−1 spins which interact withS and with each
other. We can writegSsld as a sum over different configura-
tions of these spins. For each configuration we will have a
term proportional tog+

r sl +1dg−
z−1−rsl +1d, wherer will be the

number of up spins in such a configuration. Moreover we
have to consider another factor which takes into account the
Boltzmann factor associated to this configuration of spins.

TABLE I. Comparison of the critical behavior of Ising model on scale free random networks[22] (written
inside parenthesis) and its edge-dual network.

Magnetization Specific heat Susceptibility

g.5 t̃1/2st1/2d H̃1/3 cons.scons.d t̃−1st−1d

g=5 t̃1/2s(t / lnstd)1/2d H̃ / lnsH̃d1/3 lnst̃d(1/ lnstd) 1/t̃lnst̃dst−1d

3,g,5 t̃1/2st1/sg−3dd H̃s8−gd/9 t̃sg−5d/2sts5−gd/sg−3dd t̃s3−gd/2st−1d

FIG. 2. The partition function of spins on the branch stems from
S can recursively be written in terms of the partition functions of
branches now stem from nearest neighbors ofS.
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Energy of a configuration in whichr of these spins are up is
the sum of three parts, a part given by their interaction with

the external magnetic field equal to −h̃s2r −z+1d, a part from

their interactions with spinSequal to −J̃fSr−Ssz−1−rdg and
finally a part given by interactions between themselves equal

to −J̃frsr −1d /2+sz−1−rdsz−1−r −1d /2−rsz−1−rdg. Sum-
ming up the above arguments we arrive at

gSsld = o
r=0

z−1 Sz− 1

r
DeH̃s2r−z+1d+K̃fSs2r−z+1d−2rsz−1−rd+sz−1dsz−2d/2g

3g+
r sl + 1dg−

z−1−rsl + 1d. s3d

Returning to Eq.(1), magnetization of the central spin can be
rewritten in a simpler form

m̃=
e2H̃ − x0

2

e2H̃ + x0
2

=
e2H̃ − e−2y0

e2H̃ + e−2y0

, s4d

where we have definedxl : =g−sld /g+sld= :e−yl. When the
magnetic field is positive we haveg−sld,g+sld thus yl is a
positive quantity which plays a role similar to the magnetic
field and thus can be interpreted as the local field experi-
enced by a spin at distancel from the central spinS. Now
using Eq.(3), the recurrence relation foryl reads

yl = − ln1or Sz− 1

r
Des2H̃+yl+1dr+K̃fz−1−2r−2rsz−1−rdg

or Sz− 1

r
Des2H̃+yl+1dr+K̃f2r−z+1−2rsz−1−rdg2 . s5d

Setting H̃=0 and starting from distantsl @1d spins with y
!1 one could obtain the values ofy for deeper spins in a
step by step manner using the above relation until one arrives
at y0. Equation(4) tells us that we will have magnetization in
this case only ify0 is different from zero. It is evident that a
stable nonzero solution fory0 is possible only when the
right-hand side of the recurrence relation foryl( when plotted
versusyl+1) has a slope greater than or equal to 1. The equal-
ity will provide the critical temperature of the system which
turns out to be given by

or
rSz− 1

r
De−K̃c2rsz−1−rd2 sinhfK̃cs2r − z+ 1dg

or Sz− 1

r
DeK̃cfz−1−2rsz−rdg

= 1. s6d

Unfortunately it is not possible to derive a closed relation for

K̃c. In Fig. 3 we have computed this quantity numerically
and compared it with the corresponding quantity in the Bethe
lattice itself. In the latter case the critical temperature reads
[30]

tanhKc =
1

z− 1
. s7d

As Fig. 3 showsT̃c is much grater thanTc which is as
expected due to the larger number of interactions in the edge-

dual network. In the figure we also show a linear fitT̃c=a0

+a1z to the numerical data forT̃c with a0=−3.53±0.02 and
a1=1.97±0.002. As long as the critical behavior of the sys-
tem is concerned we expect to see a standard mean field
behavior as in the usual Ising model in spatial dimensions
greater thandc=4. We will further discuss these issues in the
next section.

III. ISING MODEL ON THE EDGE DUAL
OF RANDOM NETWORKS

In this section we generalize the results of the previous
section to the case of Ising model on the edge dual of ran-
dom networks with a given degree distributionPskd. In this
case a spin on the edge of such a random network will en-
counterk1−1 andk2−1 nearest neighbors on its right- and
left-hand sides, respectively. These numbers are random
variables given by the degree distribution of nearest neigh-
bors in the random networkPskd.

A. General arguments

Along the lines of Sec. II we can write the magnetization
of a spin on an edge of random network with end point nodes
of degreesk1 andk2 as

m̃k1k2
=

e2H̃ − e−y0sk1d−y0sk2d

e2H̃ + e−y0sk1d−y0sk2d
, s8d

where nowy’s are random variables depending on distance
and degree of end point nodes. Obviously magnetization of
an arbitrary spin is given by

FIG. 3. Tc( in units of J) for the Ising model on Bethe lattices
(lower curve) and their edge dual(upper curve).

ISING MODEL ON THE EDGE-DUAL OF RANDOM NETWORKS PHYSICAL REVIEW E69, 066114(2004)

066114-3



m̃= o
k1,k2

Psk1dPsk2d
e2H̃ − e−y0sk1d−y0sk2d

e2H̃ + e−y0sk1d−y0sk2d
. s9d

As before we used the notationxlskd : =e−ylskd and xlskd
: =g−sl ;kd /g+sl ;kd, wheregSsl ;kd is the partition function for
the cluster beyond the spinS at distancel from the central
spin. As in the case of Bethe lattices(Fig. 2) these quantities
can be related togS8sl +1;k8d’s by the following relations:

gSsl ;kd = o
r=0

k−1

eH̃s2r−k+1d+K̃fSs2r−k+1d−2rsk−1−rd+sk−1dsk−2d/2g

3 o
r/k−1

p
a=1

r

g+sl + 1;kad p
b=r+1

k−1

g−sl + 1;kbd, s10d

where the second sum is over different selections ofr dis-
tinct spins from the set ofk−1 neighboring spins after as-
signing indices 1 tor to them. Thus the relation forxlskd has
the form

xlskd =
or=0

k−1
eH̃2r+K̃fk−1−2r−2rsk−1−rdgok−1−r/k−1 pa=1

k−1−r
xl+1skad

or=0

k−1
eH̃2r+K̃f2r−k+1−2rsk−1−rdgok−1−r/k−1 pa=1

k−1−r
xl+1skad

s11d

or in terms ofy’s

ylskd = − ln1or=0

k−1
eH̃2r+K̃fk−1−2r−2rsk−1−rdgok−1−r/k−1

e−oa=1

k−1−r
yl+1skad

or=0

k−1
eH̃2r+K̃f2r−k+1−2rsk−1−rdgok−1−r/k−1

e−oa=1

k−1−r
yl+1skad2 . s12d

Let us also derive a relation for the average energy of
Ising model on the edge dual of random networks in the
absence of magnetic field. First note that we can write this
quantity as a sum over the interaction energy associated to
the spins on the edges emanating from the same node ofG,
that is

Ẽ = o
i

ei = o
i
S o

ksi j dsikdl
− J̃Ssi j dSsikdD . s13d

Thus the thermodynamic average of the above quantity reads

kẼl = No
k

Pskdkekl, s14d

where kekl is the average energy associated to a node of
degreek. We are able to write this quantity in terms ofg’s by
summing over different configurations of spins on the edges
of such a node. As before we sum over configurations in
which r spins out of thesek spins are up. For each such
configuration we include an appropriate Boltzmann weight
as before. Denoting the interaction energy of these spins by

ek: = − J̃S rsr − 1d
2

+
sk − rdsk − r − 1d

2
− rsk − rdD

we obtain

kekl =
or=0

k
eke

K̃frsr−1d/2+sk−rdsk−r−1d/2−rsk−rdgor/k pa=1

r
g+s0;kadpb=r+1

k
g−s0;kbd

or=0

k
eK̃frsr−1d/2+sk−rdsk−r−1d/2−rsk−rdgor/k pa=1

r
g+s0;kadpb=r+1

k
g−s0;kbd

. s15d
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After some algebra this relation takes the following sim-
pler form in terms ofy’s

kekl = − J̃1ksk − 1d
2

−
or=0

k
2rsk − rde−K̃2rsk−rdok−r/k

e−oa=1

k−r
y0skad

or=0

k
e−K̃2rsk−rdok−r/k

e−oa=1

k−r
y0skad 2 .

s16d

Equations(9), (12), and(16) are the exact relations for mag-
netization, effective fieldsy, and energy of the system.

B. The effective medium approximation

In this section we simplify the relations obtained in the
previous subsection using the effective medium approxima-
tion [22,29] applied satisfactorily to the study of Ising model
on uncorrelated random networks. It is believed that this ap-
proximation takes in a good way into account the effects of
high degree nodes which play an essential role in determin-
ing the critical behavior of the system specifically in inho-
mogeneous network having scale free degree distribution.

To this end we rewrite the relations derived above as ify’s
are independent ofk, the degree of the end pint nodes. This
is achieved if we use the sameg for all the spins which are at
the same distance from the central spin. The only explicit
dependence onk enters Eq.(12) which must be averaged
over using the degree distribution of nearest neighborsPskd.
We emphasize that this approximation is exact if we expand
our relations for smally’s and keeping only the linear term.
Note that we are finally interested in the critical behavior of
the system wherey’s tend to zero and thus we expect the
above approximation to work well in the critical region.
Consequently we use the following relations to extract the
critical behavior of Ising Model on the edge dual of an un-
correlated random network:

m̃=
e2H̃ − e−2y0

e2H̃ + e−2y0

s17d

for the magnetization,

yl = − o
k

Pskdln

31or=0

k−1 Sk − 1

r
Des2H̃+yl+1dr+K̃fk−1−2r−2rsk−1−rdg

or=0

k−1 Sk − 1

r
Des2H̃+yl+1dr+K̃f2r−k+1−2rsk−1−rdg2 ,

s18d

for the recurrence relations definingy’s and

kẼl = − NJ̃o
k

Pskd

31ksk − 1d
2

−
or=0

k Sk

r
D2rsk − rde−K̃2rsk−rd+y0r

or=0

k
e−K̃2rsk−rd+y0r 2

s19d

for the average of energy in the absence of magnetic field.
At this stage it is instructive to note that we can obtain the

correlation between the central spin and a spin at distancel

by taking derivative ofm̃ with respect toH̃l, the magnetic
field acting on such a spin. To this end we need also to label
the magnetic fields along with they’s in the above relations.
Indeed in Eqs.(17) and(18) the magnetic field has a similar
index to that ofy. On the other hand, we have

x̃l: =U ] m̃

] H̃l

U
hH̃l=0j

= ñ1G̃cs0,ld, s20d

where ñl =2fskk2l−kkld / kklgl is the number of spins at dis-
tance l from the central spin in the edge dual of random

network andG̃cs0,ld : =kSSll−kSlkSll. Note that susceptibil-
ity is given by x̃=ol x̃l where, from Eqs.(20) and (17), x̃l
reads

x̃l =
] m̃

] y0
p
i=0

l−2 S ] yi

] yi+1
DU ] yl−1

] H̃l

U
hH̃l=0j

. s21d

If spins are deep enough in the network we can take all
the y’s equal to each other, so for their derivatives. After
making this approximation we obtain

x̃l =
] m̃

] y0
S ] yi

] yi+1
D−1] yl−1

] H̃l

e− l

l̃
uhH̃l=0j, s22d

where

l̃: = −
1

lnS ] yi

] yi+1
D . s23d

Here the indexi is only to distinguish betweeny’s in two
subsequent shells and we will eventually set all they’s equal
to each other. This quantity is determined from the fixed

point of Eq. (18). Consequently the length scalel̃ is deter-
mined from Eq.(23) and as expected, it will become infinite
in the critical point, that is when]yi /]yi+1=1. It is this criti-
cal behavior that gives rise to the critical behavior ofx̃. Note,

however, thatl̃ is not the correlation length which is deter-

mined from the long distance behavior ofG̃cs0,ld.

C. The critical behavior

Using Eq.(18) it is not difficult to see thaty0 is nonzero

only for temperatures less thanT̃c which satisfies
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o
k

Pskd
or=0

k−1
rSk − 1

r
De−K̃c2rsk−1−rd2 sinhfK̃cs2r − k + 1dg

or Sk − 1

r
DeK̃csk−1−2rsk−rdd

= 1. s24d

It is a simple generalization of Eq.(6). This equation tells

us that if K̃c→0, i.e., at high temperatures, we haveK̃c
,kkl / skk2l−kkld. In other words the critical temperature of
the system becomes infinite only when the second moment
of Pskd is infinite. This is the same behavior observed in
uncorrelated random networks[22,23]. Thus even the finite
value of clustering of edge dual networks cannot signifi-

cantly alter the critical point althoughT̃c@Tc as we saw in
the case of Bethe lattices in Sec. IV.

Now let us limit ourselves to the critical region wherey,

H̃, and t̃ : = usT−T̃cd / T̃cu are very small. We want an expan-

sion of m̃, y, and kẼl in terms of small deviations from the

critical point. First note that if we change the sign ofH̃, then
by definition the sign ofy changes too and thus the magne-
tization is reversed. On the other hand, energy does not
change under this change of sign. Any expansion of these

quantities in terms ofH̃ andy must satisfy these symmetries.
We summarize these arguments in the following expansions:

m̃< H̃ + y,

y < a1s2H̃ + yd + a3s2H̃ + yd3,

kẼl < b0 + b2y
2, s25d

where the coefficientsa1,a3,b0, andb2 are found to be

a1 = 1 +Oskk4ldt̃, a3 , Oskk4ld,

b0 , Oskk2ld, b2 , Oskk4ld. s26d

In this equation the averages are taken with respect to the
degree distribution of random networkPskd. To be more spe-
cific let us consider a definite degree distribution, that is the
well known scale free distributionPskd~k−g. We consider
several cases depending on the value ofg.

1. The caseg.5

In this case the edge dual network behaves as a scale free
network [33], with g̃=g−1.4. Moreover, all the coeffi-
cients appearing in the expansions of Eq.(25) are finite. It is
easy to show using Eq.(25) and (26) that y is given by the
following relations:

y , t̃ 1/2, H̃ = 0,

y , H̃1/3, t̃ = 0,

y ,
H̃

t̃
, H̃ Þ 0,t̃ Þ 0. s27d

The critical behavior of the other quantities can easily be
derived from these relations

m̃, t̃ 1/2, dC̃ , const . , x̃ , t̃ −1, H̃ = 0,

m̃, H̃1/3, t̃ = 0, s28d

wheredC̃ is the change of specific heat through the critical
point. Here we have only shown dependence of interesting

quantities ont̃ and H̃. Clearly these behaviors are those of
the standard mean field model seen in the Ising model in
spatial dimensions greater thandc=4. This behavior is also
seen in the case of Ising model on uncorrelated scale free
random networks withg.5 [22,23]. Note that due to the
finiteness of all the moments of degree distribution in Bethe
lattices, the critical behavior of Ising model on their edge
dual network also lies in this class.

2. The caseg=5

Now g̃=4. Some of the coefficients in expansions of Eq.
(25) become infinite. To avoid these divergences which are
an artifact of our expansion, we set a cut off for degrees
which is proportional to 1/y. Indeed in our expansion we
used the fact thatky!1 wherek is the degree of a nearest
neighbor. Fortunately we are interested in the critical behav-
ior wherey→0 and the the above arguments work well in
that region[22].

Considering the above arguments, we find

y , t̃ 1/2, H̃ = 0,

y , S H̃

lnsH̃d
D1/3

, t̃ = 0,

y ,
H̃

t̃ lnst̃d
, H̃ Þ 0,t̃ Þ 0. s29d

Thus the interesting quantities behave as

m̃, t̃1/2, dC̃ , lnst̃d, x̃ ,
1

t̃ lnst̃d
, H̃ = 0,

m̃, S H̃

lnsH̃d
D1/3

, t̃ = 0. s30d

3. The case3,g,5

In this case the degree distribution of edge dual network
will have the exponent 2,g̃,4. Again we have to take into
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account the divergences appearing in the expansion coeffi-
cients. From Eqs.(25) and (26) we find

y , t̃1/2, H̃ = 0,

y , H̃s8−gd/9, t̃ = 0,

y ,
H̃

t̃sg−3d/2, H̃ Þ 0, t̃ Þ 0. s31d

For the thermodynamic quantities we find

m̃, t̃ 1/2, dC̃ , t̃ sg−5d/2, x̃ , t̃ −sg−3d/2, H̃ = 0,

m̃, H̃s8−gd/9, t̃ = 0. s32d

We do not consider the casegø3 since in this regiong̃
ø2 and the average number of neighbors is infinite in the
edge dual network although it is still finite in the correspond-
ing random network.

The above results show that these critical behaviors are
very different from the ones seen in the uncorrelated scale
free networks[22,23], see Table I. For example, here the
magnetization always behaves similar to the standard mean
field casem̃, t̃1/2, but in uncorrelated scale free networks
this behavior is only seen forg.5 where all quantities are of
the standard mean field type[22,23].

IV. A RELATION BETWEEN ISING MODEL ON A TREE
AND ITS EDGE-DUAL NETWORK

Let us consider an Ising model(with values of spin taking
only ±1) on a tree graphG with nearest- and next-nearest
neighbor interactions of strengthJ1 andJ2 in the absence of
magnetic field. The Hamiltonian is

E = − J1o
ki j l1

SiSj − J2o
ki j l2

SiSj , s33d

where ki j l1 and ki j l2 denote the nearest- and next-nearest
neighbors, respectively. For any given configuration of spins
we can assign a unique configuration of spin variables(again
taking values ±1) to the edges of the graph: any edge which
connects two nodes having the variablesSi andSj is assigned
a valueSsi j d : =SiSj, see Fig. 4. On the other hand, for any
configurations of spins on the edgesSsi j d, there are two pos-
sible configurations of spins on the nodes, which are ob-
tained by flipping all the spinsSi on the graph. Therefore
there is a two to one correspondence between the spin con-
figurations on the nodes of the graph and the edges of the
graph.

Now if we write the above Hamiltonian in terms of spins
of edges we get

E = − J1o
ki j l1

Ssi j d − J2o
ki j l2

SsikdSskjd, s34d

wherek is the common nearest neighbor of nodesi and j .

But this is the Hamiltonian of an Ising model onG̃, the edge

dual of the tree, with nearest-neighbor interactions of

strengthJ̃1=J2 in presence of a magnetic field of magnitude

h̃=J1:

Ẽ = − h̃o
ĩ

Sĩ − J̃1o
kĩ j̃l1

SĩSj̃ , s35d

where ĩ and j̃ now denote the nodes of the edge dual graph.
Taking into account the relation between configurations men-
tioned above we obtain

ZsJ1,J2,h = 0,Td = 2Z̃sJ̃1 = J2,J̃2 = 0,h̃ = J1,Td, s36d

in which Z andZ̃ are, respectively, the partition functions of

the Ising model onG andG̃ andT denotes the temperature.
We should stress that the above relation is true only for tree
graphs, since the presence of loops inG puts constraints on

the values of spins which are assigned to the nodes ofG̃.
That is for any loop inG, the product of spins on its edges

(equivalently the nodes ofG̃) should be +1. Taking into ac-
count all these constraints makes the calculation of the par-
tition function very difficult in the general case.

In the thermodynamic limit the two models have the same

free energy density, that is,f = f̃, where f : =−T ln Z/N and

f̃ : =−T lnZ̃/ Ñ are, respectively, the free energy of the Ising
model on tree and its edge dual. Here we have set the Bolt-

zmann constant equal to one. Note that for a tree graph,Ñ
=N−1. Moreover, it is easy to see that the average magneti-

zation of a spin inG̃

FIG. 4. To each edgesi j d we can assign a spin which is defined
as the product of spins at the end point nodes of that edge, i.e.,
Ssi j d : =SiSj.
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m̃= −
] f̃

] h̃
s37d

is equal to the average correlation of two neighboring spins
in G

kSiSjl =
− ] f

] J1
. s38d

Knowing the average magnetization of spins inG̃ as a
function of magnetic field, we can write the free energy den-
sity from Eq.(37) as follows[30]:

f̃sJ̃1,h̃,Td =E
h̃

`

fm̃sh8d − 1gdh8 − J̃1 − h̃. s39d

Differentiation of the right-hand side with respect toh̃
correctly gives the magnetizationm̃ and the integration con-

stant −J̃1− h̃ can be understood from the fact that for very
large magnetic fields when the first integral vanishes, the
partition function is dominated by the configurations where
all the spins are up, and hence the free energy per site is

given by −J̃1− h̃.

Obviously if we replaceJ̃1 with J2 and h̃ with J1 we
obtain f, the free energy per site of Ising model onG with
nearest- and next-nearest-neighbor interactions. In this way

any nonanalytic behavior off̃ will appear in f too.

V. HIGH AND LOW TEMPERATURE EXPANSION
OF ISING MODEL ON EDGE-DUAL NETWORKS

Consider a random network which we denote byG. We
assume that the probability of each node having degreek is
equal toPskd. Furthermore we assume that there is no cor-
relations between the degrees of adjacent neighbors. The av-
erage number of nearest neighbors will be denoted byn1
: =kkl=okkPskd. The degree distribution of nearest neigh-
bors [21] is given by Pskd=kPskd / kkl. Thus the average
number of next-nearest neighbors will ben2: =kkloksk
−1dPskd=kk2l−kkl.

The edge dual of such a network is denoted byG̃. Corre-

spondingly every quantity pertaining to the dual networkG̃
will be designated by a tilde. In the following we will study
the Ising model with only nearest-neighbor interactions on

G̃. The partition function is

Z̃ = o
hSĩj

eK̃o
kĩ j̃l

Sĩ Sj̃ , s40d

where the sum in the exponential is over the nearest neigh-
bors on the edge dual ofG. Here we have used the notation

K̃ : = J̃/T.

A. High-temperature expansion

The above partition function can be written in a form
appropriate for a high-temperature expansion[30]. To this
end we write the exponential in the form

eK̃o
kĩ j̃l

SĩSj̃ = coshL̃sK̃dp
kĩ j̃l

f1 + Sĩ Sj̃ tanhsK̃dg, s41d

whereL̃ : =Nn2/2 is the number of edges in theG̃. Inserting
this in Eq.(40) and expanding the product we get a series of

terms each corresponding to a subgraph ofG̃. Summing over
spin configurations only terms which represent even sub-
graphs(in them each node has an even number of edges) will
survive[30] and we arrive at the following expression for the
partition function:

Z̃ = coshL̃sK̃d2Ñ o
even subgraphsge

h̃L̃sged, s42d

where h̃=tanhsK̃d, Ñ=Nn1/2 is the number of nodes ofG̃,

andL̃sged is the perimeter(the number of edges) of the even
subgraphge.

Clearly at high temperatures the first and the second terms
corresponding to triangles and squares need be kept in the
expansion:

Z̃ = coshL̃sK̃d2ÑsÑnh̃3 + ÑLh̃4 + ¯d. s43d

The number of triangles inG̃ has two parts: first, each tri-

angle ofG appears as a triangle inG̃ too. Secondly, by defi-
nition of the edge-dual network, every triple of edges ema-

nating from the same node inG make a triangle inG̃. The
number of the latter types of triangles is given by the number
of distinct choices of three edges of a node, summed over the
nodes ofG. Thus

Ñn = Nn + o
i
Ski

3
D , s44d

in which ki is the degree of nodei in G. Since in an uncor-
related random network the number of triangles is a finite
quantity in the thermodynamic limit[35], we can neglect the
first term compared with the second one which has an infi-
nite contribution in this limit. The same argument is appli-
cable to the case of squares so we can approximate these
numbers by

Ñn < o
i
Ski

3
D =

N

3!ok

ksk − 1dsk − 2dPskd,

ÑL < o
i
Ski

4
D =

N

4!ok

ksk − 1dsk − 2dsk − 3dPskd. s45d

Note that these relations become exact in the case of tree
structures even for finiteN.

B. Low-temperature expansion

We now return to Eq.(40), the original relation for the
partition function. Note that we can rewrite it as
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Z̃ = o
hSsi j dj

eK̃/2o
i

fso
j ui

Ssi j dd
2−kig, s46d

where the first sum in the exponential is over nodes ofG and
the second is over nearest neighbors of that node. Let us

write Z̃ in a simpler way

Z̃ = e−K̃L o
hSsi j dj

eK̃/2o
i

mi
2
, s47d

whereL is the number of edges inG andmi : =o j uiSsi j d. Using
the identity

esK̃/2dmi
2
=

1

Î2p

K̃

E dxie
−sK̃/2dsxi

2+2mixid, s48d

we find

Z̃ = e−K̃LS K̃

2p
DN/2

o
hSsi j dj

E Dxe−sK̃/2doi
sxi

2+2ximid, s49d

whereDx=pi dxi andi runs over all the nodes ofG. We can
now perform the sum over the spin configurations in the
integrand. To this end we note in view of the definition ofmi

o
hSsi j dj

e−K̃o
i

ximi = o
hSsi j dj

e−K̃o
ki j l

sxi+xjdSsi j d, s50d

where oki j l sums over all the links ofG. The sum can be
transformed to

p
ki j l

se−K̃sxi+xjd + eK̃sxi+xjdd=eK̃o
ki j l

sxi+xjdp
ki j l

s1 + e−2K̃sxi+xjdd

=eK̃o
i

kixi p
,i j .

s1 + e−2K̃sxi+xjdd.

s51d

Putting all these together we find

Z̃ = e−K̃LS K̃

2p
DN/2E Dxe−sK̃/2do

i

sxi
2−2kixidp

ki j l
s1 + e−2K̃sxi+xjdd.

s52d

The productpki j ls1+e−2K̃sxi+xjdd can now be expanded as a
series of terms each corresponding to a subgraphg of G.

For any nodei of the graphG, a factore−2K̃zixi should be
taken into account in whichzi is the degree of that node in
the subgraph. If a nodei does not belong to the subgraph,
zi =0. Any subgraph determines uniquely the sequence of in-
tegershzi ; i =1, . . .Nj. Note thatzi øki ∀ i. For each such se-
quence the integral can be easily calculated yielding

Z̃ = e−K̃L+sK̃/2do
i

ki
2o

g
e−2K̃o

i

ziski−zid. s53d

It is the central result of this subsection which can be used

for a low-temperature expansion of Ising model onG̃. This
formula incidentally shows that each subgraphg and its
complement(the graph obtained when one removes all the
links of g from G) give the same contribution to the partition
function.

At very low temperatures,K̃→`, only the empty graph
for which all zi =0 and its complement for which allzi =ki
contribute yielding

Z0 = 2e−K̃L+sK̃/2do
i

ki
2
= 2e−K̃L+sK̃/2dNo

k

k2Pskd

= 2e−K̃sN/2dkkl+sK̃/2dNkk2l s54d

resulting in a free energy per site equal to

f̃0 = −
J̃

2
skk2l − kkld, s55d

where we have used the relationK̃= J̃/T.
The next to leading order term comes from subgraphs

which have only one link,(we multiply their contribution by
2 to account for their complements). This will give

Z̃ = Z̃0S1 + o
ki j l

e−2K̃ski+kj−2d + ¯D , s56d

where the sum is over all the links ofG. This can be written
as

Z̃ = Z̃0S1 + N
kkl
2

e4K̃!e−2K̃sk+k8d@ + ¯D , s57d

where!@ denotes the average with respect to the two point
function Psk,k8d, the probability of two nodes of degreesk
and k8 to be neighbors. For uncorrelated networks one has
Psk,k8d=s2−dk,k8dPskdPsk8d. This procedure can be fol-
lowed for higher order contributions.

VI. CONCLUSION

In summary we studied the Ising model with nearest-
neighbor interactions on the edge dual of uncorrelated ran-
dom networks. As a simple example we studied the Ising
model on the edge-dual of Bethe lattices using the well
known recurrence relation procedure. We finally generalized
this study to the edge dual of uncorrelated random networks.
Although the critical temperature of Ising model on the edge
dual network is higher than the one in the random network,
both quantities become infinite in the same point, that is
when the second moment of the degree distribution of ran-
dom networkkk2l becomes infinite. This fact reflects the ro-
bustness of edge-dual networks against thermal fluctuations,
a property which can be attributed to the large number of
triangles and the special structure of the edge-dual networks.
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We also derived the critical behavior of Ising model on edge-
dual network of an uncorrelated random scale free network.
The results show that this behavior is significantly different
from the one seen in the uncorrelated random networks.
Moreover, we gave a simple relation between the partition
function of an Ising model with nearest- and next-nearest-
neighbor interactions on a tree like network and its edge
dual. High- and low-temperature expansions of the partition

function of Ising model on the edge dual of random networks
were also derived.
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